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Abstract

Given a proper, smooth (formal) scheme over the ring of integers of Cp, we
prove that if the crystalline cohomology of its special fibre is torsion-free then the p-
adic étale cohomology of its generic fibre is also torsion-free. In this announcement
we sketch the proof, which relies on the construction of a new cohomology theory
interpolating crystalline and étale cohomology. Further details and results will be
presented in the full forthcoming article.

1 Introduction

Let C be an algebraically closed, nonarchimedean field of mixed characteristic which is
complete under a rank one valuation; let O ⊆ C be its ring of integers, with maximal
ideal m and residue field k. The reader may assume that C is the completion of an
algebraic closure of Qp.

The main aim of this note is to outline a proof of the following result, which was
first announced by the third author during his series of Fall 2014 lectures at the Uni-
versity of California, Berkeley. Details, generalisations, and further results, including
more comparison isomorphisms than those given in Theorem 1.2, will be presented in a
forthcoming article.

Theorem 1.1. Let X be a proper, smooth, formal scheme over O, and let i ≥ 0.
Assume that the crystalline cohomology H i

crys(Xk/W (k)) of its special fibre Xk is torsion-
free. Then the p-adic étale cohomology H i

ét(X,Zp) of its generic fibre X := XC is also
torsion-free.

There are previous results of a similar flavour, at least in the case where X is the
p-adic completion of the base-change to O of a proper smooth scheme over a finite
extension V of W (k), of ramification index e. Specifically, under stronger assumptions
on torsion-freeness (for Hodge cohomology, and assuming degeneration of the mod p
Hodge–de Rham spectral sequence), G. Faltings [6, Theorem 6] proves the result if
dimX < p − 1. Moreover, X. Caruso [3] proves that if ie < p − 1, then the torsion in
crystalline and in étale cohomology agree, which implies our theorem in that case. In
the last section, we give an example showing that there may be torsion in crystalline
cohomology while the étale cohomology is torsion-free; thus one cannot hope to extend
Caruso’s result to the general case.

As an example of our theorem which falls outside the scope of applicability of previous
results, one may take for X an Enriques surface over a 2-adic base. In that case, there
is 2-torsion in H2

ét(X,Z2), so that our theorem implies the existence of 2-torsion in
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H2
crys(Xk/W (k)), and thus non-vanishing of H1

dR(Xk/k), which is a known pathology of
Enriques surfaces in characteristic 2 [10, Proposition 7.3.8].

We note that the theorem may have applications to the study of torsion in the étale
cohomology of Shimura varieties. For example, K.-W. Lan and J. Suh [11] prove first
a vanishing result for torsion in crystalline cohomology, and then deduce the same for
étale cohomology using existing results in integral p-adic Hodge theory.

Theorem 1.1 is proven by constructing a new cohomology theory valued in finitely
presented Ainf -modules (see §2 for a definition of Ainf and related objects) that interpo-
lates the usual p-adic cohomology theories associated to X:

Theorem 1.2. For any proper, smooth, formal scheme X over O, there is a perfect
complex RΓA(X) of Ainf-modules, functorial in X, with the following specializations:

- Étale specialization: RΓA(X)⊗L
Ainf

W (C[) ' RΓét(X,Zp)⊗L
Zp
W (C[).

- Crystalline specialization: RΓA(X)⊗L
Ainf

W (k) ' RΓcrys(Xk/W (k)).

- de Rham specialization: RΓA(X)⊗L
Ainf
O ' RΓdR(X/O), where the base change is

along Fontaine’s map θ : Ainf → O (see §3.2).

Under the hypotheses of Theorem 1.1, the individual cohomology group H i
A(X) :=

H i(RΓ(X)) enjoys similar specialization isomorphisms, from which the theorem follows;
this will be explained in Section 2.

2 Strategy of the proof

Let O[ := lim←−ϕO/p be the tilt (in the terminology of [13, §3]; classically O[ was denoted
by RO [8, 1.2.2]) of O, whose field of fractions C[ is an algebraically closed, nonar-
chimedean field of characteristic p, and let Ainf := W (O[) be the first of Fontaine’s
period rings, on which we denote by ϕ the usual Witt vector Frobenius. We will require
the elements ε := (1, ζp, ζp, . . . ) ∈ O[ and µ := [ε] − 1 ∈ Ainf , where ζp, ζp2 , · · · ∈ O is
a chosen compatible sequence of p-power roots of unity and [·] denotes the Teichmüller
lifting. The results of our constructions will be independent of this chosen sequence of
p-power roots of unity.

The theorems are proved by constructing a Zariski sheaf AΩX/O of complexes of
Ainf -modules on any smooth, formal O-scheme X, satisfying the following properties:

(A1) AΩX/O ⊗L
Ainf

Ainf [
1
µ ] ' Rν∗Ainf,X ⊗L

Ainf
Ainf [

1
µ ], where ν is the projection from the

pro-étale site of X to the Zariski site of X (see [14, §3] for the necessary theory of
the pro-étale site of a rigid analytic space);

(A2) AΩX/O ⊗L
Ainf

W (k) 'WΩ•Xk/k
after p-adic completion of the left-hand side;

(A3) AΩX/O ⊗L
Ainf
O ' Ω•X/O, where the base change is along Fontaine’s map;

(A4) AΩX/O is equipped with a ϕ-semilinear endomorphism ϕA which is compatible
with (A1) and (A2).

Assuming that X is proper, the cohomology theory of Theorem 1.2 is defined by
RΓA(X) := H(X,AΩX/O). Now assume moreover that H i

crys(Xk/W (k)) is torsion-free.
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Then a Fitting ideal argument using (A2) and (A4) shows that the cohomology group
H i

A(X) = H i(X,AΩX/O) is a finite free Ainf -module equipped with a ϕ-semilinear endo-
morphism ϕA which becomes an isomorphism after inverting ϕ(ξ), where ξ := µ/ϕ−1(µ),

in the sense that ϕA : ϕ∗H i
A(X)⊗Ainf

Ainf [
1

ϕ(ξ) ]
'→ H i

A(X)⊗Ainf
Ainf [

1
ϕ(ξ) ]; in other words,

H i
A(X) is a Breuil–Kisin module in the sense of L. Fargues [7, §4].

Moreover, the Breuil–Kisin module H i
A(X) has the following étale and crystalline

specializations, which follow respectively from (A1) and (A2):

- (H i
A(X)⊗Ainf

W (C[))ϕA=1 ∼= H i
ét(X,Zp);

- there is a canonical inclusion H i
A(X) ⊗Ainf

W (k) ↪→ H i
crys(Xk/W (k)) with torsion

cokernel, which is an isomorphism if H i+1
crys(Xk/W (k)) is also assumed to be torsion-

free.

Hence H i
ét(X,Zp) is a free Zp-module of the same rank as H i

crys(Xk/W (k)). Assuming
the existence of the complex AΩX/O, this completes the sketched proof of Theorem 1.1
and defines our new cohomology theory H i

A(X) interpolating the p-adic étale and crys-
talline cohomologies of the generic and special fibres of X respectively.

Remark 2.1. When X is the p-adic completion of a proper smooth O-scheme, Theorem
1.1 follows more directly from the existence of AΩX/O, at least if H i+1

crys(Xk/W (k)) is also

torsion-free. Indeed, RΓO[(X) := RΓ(X,AΩX/O) ⊗L
Z Fp is a perfect complex of O[-

modules, and perhaps the simplest new observable of our construction, whose fibres
interpolate the étale and crystalline cohomology modulo p, thanks to (A1) and (A2):

- RΓO[(X)⊗L
O[ C

[ ' RΓét(X,Fp)⊗L
Fp
C[,

- RΓO[(X)⊗L
O[ k ' RΓ(Xk,Ω

•
Xk/k

).

By semicontinuity this gives dimFp H
i
ét(X,Fp) ≤ dimkH

i(Xk,Ω
•
Xk/k

), which yields

the final of the following (in)equalities:

dim
W (k)[

1
p ]
H i

crys(Xk/W (k))[1
p ] = dimQp H

i
ét(X,Qp)

≤ dimFp H
i
ét(X,Fp)

≤ dimkH
i(Xk,Ω

•
Xk/k

).

Here the equality is a consequence of the crystalline comparison theorem and thus uses
that X is algebraic, while the first inequality is formal. If we now assume further that
H∗crys(Xk/W (k)) for ∗ = i, i + 1 is torsion free, then the first and last dimensions in
the above chain of (in)equalities are equal, and thus all the dimensions are equal. In
particular,

dimQp H
i
ét(X,Qp) = dimFp H

i
ét(X,Fp),

which implies that H i
ét(X,Zp) is torsion free. (Note also that, by GAGA results [9,

Thm. 3.7.2], H i
ét(X,Zp) identifies with the p-adic étale cohomology of the generic fibre

of the proper smooth O-scheme of which X is the p-adic completion.)

Remark 2.2. One can lift (A2) above to a slightly larger portion of Ainf : the base change
AΩX/O ⊗L

Ainf
Acrys can be identified with the (Zariski sheafified) crystalline cohomology

of X relative to Acrys, where the latter is given the standard pd-structure.
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3 Outline of construction of AΩX/O

It is sufficient to naturally (in an ∞-categorical sense) define the value of AΩX/O on
arbitrary affine open formal subschemes of X, so we may assume that X = Spf R, where
R is the p-adic completion of a smooth O-algebra. Hence X = XC is the rigid analytic
space Spa(R[1

p ], R) over C, on whose pro-étale site we denote by Ainf,X := W (lim←−ϕO
+
X/p)

the first period sheaf from [14, Def. 6.1]; note that Ainf,X is a sheaf of Ainf -modules.

3.1 Modifying torsion via the décalage functor Lη

We must first describe a general process for modifying torsion in complexes, based on
P. Deligne’s [4, 1.3.3] décalé filtration and used previously by P. Berthelot and A. Ogus
[1, Def. 8.6]. Let A be a ring, f ∈ A a non-zero divisor, and N a cochain complex of
A-modules supported in non-negative degrees such that H0(N) is f -torsion-free. Then
we may replace N by a quasi-isomorphic complex – still supported in non-negative
degrees – consisting of f -torsion-free A-modules, and we then define LηfN to be the
subcomplex of N given by LηfN

n := {x ∈ fnNn : dx ∈ fn+1Nn+1} for n ≥ 0. Then

Lηf : D≥0
f−tf(A) → D≥0

f−tf(A) is a well-defined functor, where D≥0
f−tf(A) is the derived

(or, more usefully, ∞-) category of complexes of A-modules supported in non-negative
degrees with f -torsion-free H0. Evidently there is a natural transformation Lηf → id.

Among various easily established identities (e.g., if g ∈ A is another non-zero divisor
then Lηfg = LηfLηg and (Lηf−) ⊗L

A A/gA ' Lηf mod gA(− ⊗L
A A/gA), under mild

hypotheses), the most important is that there is a natural quasi-isomorphism

LηfN ⊗L
A A/fA

∼→ (H•(N ⊗L
A A/fA), Bock),

where the right side denotes the complex formed from the cohomology of N ⊗L
A A/fA

with differential given by the Bockstein operator Hn(N⊗L
AA/fA)→ Hn+1(N⊗L

AA/fA)
associated to f .

3.2 Constructing pro Witt complexes

We now describe two general processes for building “F -V -procomplexes over the O-
algebra R” in the sense of Langer–Zink [12], among which their relative de Rham–Witt
complex {WrΩ

•
R/O}r is the initial object. Note first that Fontaine’s usual homomorphism

of p-adic Hodge theory θ : Ainf → O, whose kernel is generated by the non-zero divisor
ξ, lifts to a homomorphism θr : Ainf → Wr(O) whose kernel is generated by ξr :=
µ/ϕ−r(µ); the Restriction R, Frobenius F , and Verschiebung V on the Witt vectors
Wr(O) correspond via the homomorphisms θr respectively to id, ϕ, and ξϕ−1 on Ainf .

Let D be a coconnective, commutative, differential graded (or, more generally, E∞-)
algebra over Ainf which is equipped with a ϕ-semilinear automorphism ϕD and such that
H0(D) is µ-torsion-free. Assume also that there are isomorphisms ofWr(O)-algebras λr :

Wr(R)
'→ H0(D⊗L

Ainf
Ainf/ξr) for all r ≥ 1 in such a way that the Restriction, Frobenius,

and Verschiebung on the left correspond respectively to the canonical projection, ϕ, and
ξϕ−1 on the right.

First process: Equipping the cohomology groups Wn
r (D)pre := Hn(D ⊗L

Ainf
Ainf/ξr)

with the Bockstein differentialWn
r (D)pre →Wn+1

r (D)pre associated to ξr makesW•r (D)pre

into a commutative differential graded Wr(O)-algebra. Equipping them further with a
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Restriction, Frobenius, and Verschiebung given by “ϕ−r(ξ)n times the canonical pro-
jection”, ϕ, and ξϕ−1 makes {W•r (D)pre}r into an F -V -procomplex over the O-algebra
R. (To be precise, the necessary identity that Fdλr([x]) = λr([x

p−1])dλr([x]) for all
x ∈ R does not appear to be automatic for arbitrary D, but will be satisfied in our
cases of interest.) By the universal property of Langer–Zink’s relative de Rham–Witt
complex, there are then induced natural morphisms {WrΩ

•
R/O}r → {W

•
r (D)pre}r of

F -V -procomplexes over the O-algebra R.
Improved process: It turns out that W•r (D)pre must be adjusted by some ϕ−r(µ)-

torsion. To do this, we modify the first process in order to equip the cohomology groups
W•r (D) := H•(Lηϕ−r(µ)D ⊗L

Ainf
Ainf/ξr) with the structure of an F -V -procomplex over

the O-algebra R. There are natural resulting morphisms

{WrΩ
•
R/O}r −→ {W

•
r (D)}r −→ {W•r (D)pre}r

of F -V -procomplexes over the O-algebra R.
The following is the key technical step in the construction of AΩR/O:

Theorem 3.1. Apply the “Improved process” to D = RΓproét(X,Ainf,X). Then the
induced map WrΩ

•
R/O → W

•
r (RΓproét(X,Ainf,X)) descends to the p-adic completion of

WrΩ
•
R/O, inducing an almost (wrt. the ideal Wr(m) ⊆Wr(O)) isomorphism of complexes

of Wr(O)-modules for each r ≥ 1:

ŴrΩ•R/O

al.
'→W•r (RΓproét(X,Ainf,X))

Proof. By a localisation and étale base change argument, the assertions reduce to the
case that R = O〈T±1〉 := O〈T±1

1 , . . . , T±1
d 〉. Let R̃ := O〈T±1/p∞〉, which is equipped

with a continuous action of Zdp via O-algebra homomorphisms, where the generator in

the ith-coordinate of Zdp acts via T
j/pk

i 7→ ζj
pk
T
j/pk

i , for j ∈ Z and k ≥ 0. In fact,

R̃[1
p ] is a perfectoid C-algebra occurring as the global sections of a pro-étale cover X̃ :=

“ lim←− ”
k

Spa(K〈T±1/pk〉,O〈T±1/pk〉) of X, and there is a corresponding Hochschild–Serre

map RΓcont(Zdp, H0
proét(X̃,Ainf,X)) → RΓproét(X,Ainf,X). After tensoring by Ainf/ξr ∼=

Wr(O), this is an almost quasi-isomorphism (wrt. the idealWr(m) ⊆Wr(O)) by Faltings’
almost purity theorem [5, Thm. 3.1] [14, Thm. 6.5].

Applying the “Improved process” also toD = RΓcont(Zdp, H0
proét(X̃,Ainf,X)) we arrive

at a commutative diagram of commutative, differential graded Wr(O)-algebras

WrΩ
•
R/O

//

**TTT
TTTT

TTTT
TTTT

TT
W•r (RΓproét(X,Ainf,X))

W•r (RΓcont(Zdp, H0
proét(X̃,Ainf,X)))

33hhhhhhhhhhhhhhhhhhhh

where the right diagonal arrow is an almost isomorphism by the final assertion of the
previous paragraph. Up to explicit ϕ−r(µ)-torsion, the terms appearing in the complex
at the bottom of the diagram are H•cont(Zdp,Wr(R̃)); the top left of the diagram is even
more explicit, using Langer–Zink’s description of their relative de Rham–Witt complex
in the case of a polynomial algebra [12, §2]. Using such explicit descriptions we verify
directly that the diagonal left arrow becomes an isomorphism after p-adically completing
WrΩ

•
R/O, and this completes the proof.
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3.3 The final step: glueing

From the definition of the improved W•r (−)-process and the stated properties of the Lη
functor, there is a chain of quasi-isomorphisms

W•r (RΓproét(X,Ainf,X)) =
(
H•(Lηϕ−r(µ)RΓproét(X,Ainf,X)⊗L

Ainf
Ainf/ξr), Bock

)
' LηξrLηϕ−r(µ)RΓproét(X,Ainf,X)⊗L

Ainf
Ainf/ξr

' LηµRΓproét(X,Ainf,X)⊗L
Ainf

Ainf/ξr,

and hence the previous theorem yields an almost quasi-isomorphism

ŴrΩ•R/O
al.' LηµRΓ(X,Ainf,X)⊗L

Ainf
Ainf/ξr.

Let Rk = R⊗O k. For each r ≥ 1, we can reduce the preceding map from Ainf/ξr ∼=
Wr(O) to Wr(k) to obtain the lower horizontal map in the diagram

ArΩR/O //

��

LηµRΓproét(X,Ainf,X)⊗L
Ainf

Ainf/p
r

��
WrΩ

•
Rk/k

// LηµRΓproét(X,Ainf,X)⊗L
Ainf

Wr(k),

defining the top left complex ArΩR/O of Ainf/p
r-modules via (homotopy) pullback. As

the lower two terms are almost zero, the upper horizontal arrow is an almost iso-
morphism. Moreover, the right vertical map is a quasi-isomorphism after applying
− ⊗L

Ainf/pr
Wr(k), since Wr(k) ⊗L

Ainf/pr
Wr(k) ' Wr(k). This implies that there is a

quasi-isomorphism
ArΩR/O ⊗L

Ainf/pr
Wr(k) 'WrΩ

•
Rk/k

.

We may now finally define

AΩR/O := holim
r

ArΩR/O,

which is quasi-isomorphic, up to W (m[)-torsion (we avoid the word “almost” here since
W (m[) 6= W (m[)2), to LηµRΓ(X,Ainf,X) and satisfies AΩR/O ⊗L

Ainf
W (k) 'WΩ•Rk/k

af-
ter p-adic completion of the left-hand side. Then AΩR/O is equipped with a ϕ-semilinear
operator ϕA, by glueing those on WΩ•Rk/k

and LηµRΓproét(X,Ainf,X).

Since µ ∈W (m[), we have

AΩR/O ⊗L
Ainf

Ainf [
1
µ ] ' LηµRΓproét(X,Ainf,X)⊗L

Ainf
Ainf [

1
µ ]

' RΓproét(X,Ainf,X)⊗L
Ainf

Ainf [
1
µ ],

verifying (A1). We have already verified (A2); we omit the proof of (A3) since it is not
required for Theorem 1.1. This completes the outline of the construction of AΩX/O.

3.4 q-de Rham complexes

An alternative perspective on AΩX/O and its construction is offered by the idea of q-de
Rham complexes.
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If A is a ring, q ∈ A×, and U is a formal variable, then the “q-de Rham complex”
q - Ω•A[U±1]/A of the Laurent polynomial algebra A[U±1] is defined to be

A[U±1] −→ A[U±1] dlogU, U j 7→ [j]qU
j dlogU,

where dlogU is a formal symbol and [j]q := qj−1
q−1 is the “q-analogue of the integer j”. In

the more general case of a Laurent polynomial algebra in several variables U1, . . . , Ud,
set

q - Ω•
A[U±1

1 ,...,U±1
d ]/A

:=
m⊗
i=1

q - Ω•
A[U±1

i ]/A
.

Note that if q = 1 then the q-de Rham complex equals the usual de Rham complex;
more generally, it is a deformation of the de Rham complex over A := A/(q− 1), in the
sense that q - Ω•

A[U±1
1 ,...,U±1

d ]/A
⊗A A = Ω•

A[U±1
1 ,...,U±1

d ]/A
.

If A is a topological ring, whose topology is I-adic for some ideal I, then define
q - Ω•

A〈U±1
1 ,...,U±1

d 〉/A
to be the I-adic completion of q - Ω•

A[U±1
1 ,...,U±1

d ]/A
.

Proposition 3.2. If R = O〈T±1
1 , . . . , T±1

d 〉 then AΩR/O is quasi-isomorphic to the q-de

Rham complex q - Ω•Ainf〈U±1
1 ,...,U±1

d 〉/Ainf
associated to q = [ε] ∈ A×inf .

Proof. It follows from the proof of Theorem 3.1, and the general definition of AΩR/O,
that in this case AΩR/O is quasi-isomorphic (and not just almost so) to

LηµRΓcont(Zdp, H0
proét(X̃,Ainf,X)).

This can be explicitly calculated and is quasi-isomorphic to q - Ω•Ainf〈U±1
1 ,...,U±1

d 〉/Ainf
(Ui

corresponds to the Teichmüller lift of (Ti, T
1/p
i , T

1/p2

i , . . . ) ∈ R̃ [).

Our complex AΩX/O may therefore be seen as a natural extension of the q-de Rham

complex q - Ω•Ainf〈U±1
1 ,...,U±1

d 〉/Ainf
, defined initially only for tori Spf O〈T±1

1 , . . . , T±1
d 〉 with

a fixed choice of coordinates, to arbitrary smooth, formal O-schemes X.

4 Some examples

We give an example illustrating the sharpness of our result, namely that it is possible
to have more torsion in crystalline cohomology than in étale cohomology.

Although the following does not fall within the scope of our result, as it involves
non-smooth stacks, it heuristically explains what can happen:

Example 4.1. Let G = Z/pZ, and H = µp, both viewed as finite flat group schemes
over O. Choose a map η : G → H that is an isomorphism on the generic fibre and
trivial on the special fibre by using a primitive pth root of unity in C. Let T → BH be
the universal H-torsor and S = T ×BH BG its pullback along η. Then SC is a point as
it is the universal G-torsor, while Sk ∼= BGk × µp is non-reduced. It is then easy to see
that the crystalline cohomology of Sk has a lot of torsion, while the étale cohomology
of SC is trivial.

One can easily push the preceding example into the world of proper smooth schemes:
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Example 4.2. Let p = 2, and fix an Enriques surface S/O whose special fibre is
“singular” in the sense that it has fundamental group Z/2Z [2, §3]. Fix also an auxiliary
elliptic curve E/O, and choose a map Z/2Z→ E that is non-trivial on the generic fibre
and trivial on the special fibre. Pushing out the universal cover of S along this map
gives an E-torsor D → S whose generic fibre DC → SC is non-split, i.e., does not admit
a section, but whose special fibre Dk → Sk is split.

Thus D is a proper smooth O-scheme of relative dimension 3 and one can show,
using the Leray spectral sequence for D → X, that H2

ét(DC ,Z2) is torsion-free while
H2

crys(Dk/W (k)) has non-trivial 2-torsion.
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